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Abstract

Motivation: Cells communicate with their environment via signal transduction pathways. On
occasion, the activation of one pathway can produce an effect downstream of another pathway, a
phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs
rely on simple overlap statistics.

Results: We present XTaLk, a path-based approach for identifying pairs of pathways that may cross-
talk. XTaLk computes the statistical significance of the average length of multiple short paths that
connect receptors in one pathway to the transcription factors in another. By design, XTALk reports
the precise interactions and mechanisms that support the identified crosstalk. We applied XTaLk to
signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set
of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which XtaLk
achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over
the closest competing approach. The area under the receiver operator characteristic curve varied
with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level.
We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000
pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature
(81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by XtaLk that ac-
curately recovered known mechanisms of crosstalk.

Availability and implementation: The XTALK software is available at http:/bioinformatics.cs.vt.
edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-
bioinformatics-xtalk.

Contact: ategge@vt.edu, murali@cs.vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cells communicate with their environment through signal trans-
duction pathways. Typically, a signaling pathway contains a well-
defined set of receptors and transcription factors (TFs). Upon
activation of the pathway’s receptors, a series of signaling inter-
actions activate the TFs in that pathway, thereby regulating the ex-
pression of target genes as a down-stream response. On occasion,
these intra-cellular signal cascades result in off-target responses,
commonly known as pathway crosstalk. More specifically,

crosstalk occurs when the activation of the receptors of a specific
signaling pathway results in the down-stream response being exe-
cuted by the TFs of a different pathway (Housden and Perrimon,
2014). Such a down-stream response manifests itself through
changes in the expression of the second pathway’s target genes.
Signaling pathway crosstalk may lead to several cancers (Elinav
et al., 2013; Lopez-Otin and Hunter, 2010) and has also been
implicated in host defense against pathogens in plants (Kunkel and
Brooks, 2002).
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Fig. 1. Workflow for XtaLk. XTALK takes as input a signaling network, a set of receptors in pathway A and a set of TFs from pathway B. XTaLk enumerates k paths
from the receptors to each TF, calculates a crosstalk statistic y(A,B) and computes a P value representing the significance of crosstalk from pathway A to pathway
B. XTALk also returns a crosstalk network representing the set of interactions responsible for the identified crosstalk. Triangles: receptors in pathway A; rectangles:

TFs in pathway B

Computational methods have been developed to systematically
predict crosstalk. The simplest approach, which we call nodes-in-
common or NIC in this article, asks if two pathways share any pro-
teins based on the observation that shared proteins may mediate
crosstalk (Donato ef al., 2013; Knight and Knight, 2001; Taniguchi
et al., 2006). Hsu and Yang (2012) estimated pathway crosstalk
based on similarities in Gene Ontology annotations. Interaction-
based methods try to identify crosstalk by quantifying the connectiv-
ity between pathway pairs. Given a protein—protein interaction
network, Li et al. (2008) and McCormack et al. (2013) linked two
pathways A and B if more edges connected the proteins in A to the
proteins in B than expected by chance in a randomly wired network.
In the case when two pathways are known to crosstalk, Zielinski
et al. (2009) developed a method that used a combined signaling
network to identify the protein(s) responsible for crosstalk. A similar
approach, biological process linkage networks (BPLN), linked two
processes A and B if the proteins annotated to A were connected to
more proteins annotated to B than expected by chance (Dotan-
Cohen et al., 2009). In this article, we selected BPLN as an exemplar
of the interaction-based techniques.

These approaches have several drawbacks. The NIC methods
cannot identify crosstalk when the two pathways have very few or
no common proteins. For example, MAPK pathway and the Hippo
pathway (Reddy and Irvine, 2013) crosstalk but share only a few
proteins. More importantly, these methods treat a pathway simply
as a set of proteins. While the edge-based approaches do use inter-
actions between proteins, they fail to identify crosstalk when the
members of pathway A do not interact with the members of path-
way B, as in the case of crosstalk from the Hif-1 pathway to the
Wnt pathway (Zhang et al., 2013). More importantly, they do not
consider the canonical structure of a pathway: a set of receptors con-
nected via regulatory, signaling and physical interactions to a set of
TFs. Therefore, they are unlikely to discover the mechanisms or the
sequence of interactions that underlie pathway crosstalk.

To develop our method XTark, we started by considering the
biological definition of crosstalk. Crosstalk occurs between two sig-
naling pathways A and B when the stimulation at the receptors of
pathway A causes a cellular response downstream of pathway B,
usually carried out by the TFs in B. We reasoned that there must be
at least one directed path of signaling and regulatory interactions
along which a signal can traverse from some receptor of pathway A
to some TF in pathway B. We expected these paths to be short, so
that the signal could travel rapidly to affect the response. Crosstalk
can also be asymmetric: A may crosstalk with B (i.e. stimulation of
A’s receptors controls at least one of B’s TFs) but B may not cross-
talk with A (i.e. stimulation of B’s receptors has no effect on any of

A’s TFs) as in the case of crosstalk from the insulin-like growth fac-
tor-I pathway to the leptin pathway (Ozbay and Nahta, 2008).
Using these guiding principles, we developed XTaLK to identify the k
shortest paths from any receptor in pathway A to each TF in path-
way B (Fig. 1), where k is a user-defined parameter. We imple-
mented an efficient dynamic-programming based approach to
exactly compute the statistical significance of the crosstalk. By de-
sign, XTALK reports the precise sequences of interactions and mech-
anisms that support the identified crosstalk between pathways.

To the best of our knowledge, databases of pathway crosstalk
are currently unavailable for validation of methods such as Xraix.
To overcome this challenge, we created a gold-standard set of dir-
ected pathway pairs that crosstalk. To create this dataset, we re-
stricted our definition of crosstalk to only those events that occur
when an interaction (e.g. activation, inhibition or binding) between
two proteins mediates the crosstalk. We acknowledge that several
other mechanisms of crosstalk exist, including protein—protein inter-
action events, feedback loops and when members of pathway B are
downstream targets of TFs in pathway A. We plan to incorporate
these mechanisms in the future. We studied over 400 publications
for evidence of crosstalk between 272 pairs of pathways in the
KEGG database Kanehisa ez al. (2012). We found literature support
for crosstalk between 132 pairs. These pairs formed our gold stand-
ard dataset.

We evaluated XTALK in several ways.

1. We used receiver operator characteristic (ROC) curves to com-
pare XTALK, NIC and BPLN for the 272 pathway pairs that we
had explicitly considered for inclusion in the gold standard
(Section 3.1). XTtaLk achieved an area under the ROC (AUC) of
0.65, which was an improvement of 12% over its closest com-
petitor BPLN.

2. We observed that the AUC of XtaLk varied from one pathway
to another (Section 3.2). Therefore, we studied the three path-
ways with the lowest AUCs. We found support in the literature
for 9 out of 15 (60%) false-positive pathway pairs (Section 3.3).

3. We also considered XTALK ’s results from an experimentalist’s
perspective by examining the top-three highest ranking pairs for
each pathway. XtaLk had a precision of 0.75 for these ranks.
We were able to find support in the literature for seven false
positives. Notably, in both this and the previous analysis, we
were able to find the appropriate publications only after includ-
ing proteins in XTALK ’s crosstalk networks in our PubMed
queries.

4. We expanded our analysis by applying XTALK to a comprehen-
sive set of 658 signaling-related pathway pairs in the KEGG
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database. We searched the literature for the top 27 pathway
pairs among those that we did not consider for the gold stand-
ard. XtaLk achieved 81% precision for these predictions
(Section 3.5).

5. To assess the wider utility of XTALK, we applied it to more than
7000 pathways pairs in the NCI-PID database (Schaefer et al.,
2009). As in the case of the KEGG database, XTaLk achieved
high precision (78 %) among the top-ranking pathway pairs.

6. Finally, we highlight the utility of the XTaLK networks in re-
covering the known mechanisms of crosstalk and assisting in the
manual curation of pathway pairs.

2 Algorithms

In this section, we describe XTALK (Section 2.1) and two other meth-
ods for estimating crosstalk: NIC, which uses the set of nodes in
common between two pathways (Section 2.2), and BPLN, which is
based on the set of nodes in one pathway that interact with nodes in
the other pathway (Section 2.3). Supplementary Section 2 describes
the datasets we use.

2.1 X7AaLK : average length of the k shortest paths

On the basis of the criteria outlined in Section 1, we define our
measure of crosstalk as follows. Given two signaling pathways A
and B, let R, (respectively, Rp) denote the set of receptors in A (re-
spectively, B). We define the sets T4 and Ty of TFs in the two path-
ways similarly. XTaLKk takes the following inputs: (i) unweighted,
directed protein signaling network G = (V, E), (ii) the sets R4 and
Rp of receptors in A and B, respectively, and (iii) the sets T4 and Tp
of TFs in the pathways. Let n(r,t,k) denote the kth shortest path in
G from receptor r to TF t and d(r,t,k) denote the length of path
n(r,t,k). When k=1, n(r,t,1) is the shortest path between r and .
We similarly define (R 4,t,k) as the kth shortest path from the set of
receptors R4 to the TF 7 and the length of this path as d(Ra,z,k); in
this definition, we consider paths that start at any member of Ry4.
We now define the crosstalk statistic between pathways A and B as

X(A:B7k) = T Z Zd(RAa z, 1)7

1 k

"B [Ty 1=1
where np = |Tg| and k is a user-specified parameter. If there were
only k' < k paths from a set of receptors to a TF, we considered
only k' paths in the innermost summation.

In this formula, for each TF ¢ in B, we compute the lengths of the
k shortest paths in G from the receptor set R4 to t. We define the
value of the crosstalk between A and B to be the average of these
lengths, with the average taken over all the TFs in B that are reach-
able from at least one receptor in A. Note that this statistic is defined
only if there is at least one path from a receptor in R4 to a TF in Tp.
The identity of the receptors in R, are not important, just as long as
the signal can traverse (quickly) from some receptor in A to the TF
in B. Smaller values of y(A,B,k) are more indicative of crosstalk
from A to B. In general, the statistic is asymmetric, i.e.
%(A,B,k) = y(B,A, k). In practice, to compute 7(R4,t,k), we con-
nect an artificial source node o to each receptor r € R4 and calculate
d(Ra,t, k) as d(oc,t,k) — 1 using Yen’s k-shortest loopless path algo-
rithm (Yen, 1971).

We acknowledge that there are other ways of combining these
shortest path lengths. We opted for this definition since it was sim-
ple, it satisfied our criteria, it was asymmetric and we could exactly
compute its statistical significance. We designed a dynamic pro-
gramming algorithm to quickly and exactly compute the statistical

significance of y(A,B,k) (Supplementary Section 1.1). We corrected
all reported P values for testing multiple hypotheses (Benjamini and
Hochberg, 1995).

2.2 Nodes common to pathways

The inputs to this method are (i) the proteins in pathway A and (ii)
the proteins in pathway B. We compute the number of proteins pre-
sent in both pathways and use the hypergeometric test to compute
the statistical significance of this overlap. We refer to this method as
NIC.

2.3 Edges crossing pathways

This approach considers whether two pathways connect via one or
more protein—protein interactions and if these connections occur
more frequently than expected at random, given an interactome. We
modify the BPLN method (Dotan-Cohen et al., 2009), which was
originally developed to identify links between genes annotated to
two (Gene Ontology) processes within undirected protein—protein
interactions. In our context, the inputs to BPLN are (i) an un-
weighted, directed protein signaling network G = (V,E) (as for
XTALK), (ii) the proteins in pathway A and (iii) the proteins in path-
way B. We compute the number of proteins g in pathway B, such
that g is not a member of A and there is some protein p in pathway
A, such that (p, g) is a (directed) edge in G. We compute the P value
for this statistic using the hypergeometric test. We also consider a
variant where we include g even when g is a member of pathway A.

2.4 Ranking pathway pairs

To establish a ranked list of pathway pairs for each method, we
grouped the pairs by pathway A and optimized the AUC of each
pathway A by considering multiple values of k (Supplementary
Section 3.2). We ordered pathway pairs by increasing P value and
assigned a rank 7 p to each pair. We then collated all pathway pairs
first sorting by 74 g and then by the P value of the pair.

2.5 Crosstalk networks and visualization

As part of its calculations, XTALK produces a crosstalk network,
which is the union of k|Tg| shortest paths {n(Ra,t,l),
t € Tp,1 <1 < k}. This network represents the potential set of sig-
naling interactions responsible for the crosstalk from pathway A to
pathway B. We visualize our crosstalk network using GraphSpace,
an internally developed graph-sharing website. We provide the
networks computed by Xrtaik at http://graphspace.org/graph-
s?tags=2015-bioinformatics-xtalk. See Supplementary Section 1.2
for more details on GraphSpace.

3 Results

We studied the KEGG and NCI-PID databases. We divided all the
pathway pairs we analyzed into three sets (Supplementary Sections
2.3-2.5): (i) the KEGG curated set containing the 272 pathway
pairs we considered for inclusion in the gold standard; (ii) the
KEGG test set containing 678 other pathway pairs and (iii) the
NCI-PID test set containing 7254 pathway pairs. We performed
several types of evaluations. KEGG curated set: First, we used it to
compute AUC values for each algorithm (Section 3.1). We also com-
puted the AUC values for each pathway individually (Section 3.2).
Second, for the pathways with the lowest AUCs, we used XTALK’s
crosstalk networks to search the literature for support for false-posi-
tive predictions (Section 3.3). Third, in a complementary evaluation,
we studied the false-positive pairs among the highest ranking results
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for each pathway, since an experimentalist is likely to be interested
in following such predictions for validation (Section 3.4). Test sets:
We considered the highest-ranked pairs of pathways computed by
XTALK for each of the two test sets (Section 3.5). We estimated the
precision of XTALK by determining which pairs contained support in
the literature for crosstalk. For these analyses, we only considered
XraLK since it outperformed NIC and BPLN on the first analysis, as
we show in Section 3.1. Finally, we discuss the crosstalk networks
for specific top-ranked pathway pairs (Sections 3.6 and 3.7).

3.1 Comparison of XtaLk, NIC and BPLN
We compared the performance of XrtaLk to that of NIC and BPLN
on the basis of the AUC, the true-positive rate (TPR) and the
false-positive rate (FPR) on both the KEGG-family and the KEGG-
protein networks (Supplementary Section 2.1).

Figure 2 highlights the values of TPR10FPR, TPR30FPR and
AUC for XtaLk, BPLN and NIC on the KEGG-family and KEGG-
protein networks. Several trends emerged from these plots. First,
the NIC approach performed poorly on both networks (AUC of
0.50 and 0.48). Even at FPRs of 0.1 and 0.3, its TPR was at most
0.37. Second, on the KEGG-family network, BPLN showed a 16%
improvement in AUC over NIC (Fig. 2). BPLN’s TPR was larger
than that of NIC for values of FPR between 0.1 and 0.9
(Supplementary Fig. S1). Third, XTaLk outperformed both NIC and
BPLN on both networks. The AUC of XtaLk (0.65 on the KEGG-
family network and 0.64 on the KEGG-protein network) was at
least 12% higher than that of BPLN (0.58 on the KEGG-family
network and 0.56 on the KEGG-protein network). On the KEGG-
family network, XTaLk achieved TPR10FPR of 0.30, an improve-
ment of 100% over NIC (TPR10FPR of 0.14) and over BPLN
(TPR10FPR of 0.15). XtaLk dominated both NIC and BPLN for
FPR up to 0.8 (Supplementary Fig. S1).

On both networks, the performance of NIC was similar to that
of a random predictor, suggesting that it is neither necessary nor suf-
ficient for two pathways to crosstalk if they share proteins. We also
considered two variants of the NIC method that used only the
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Fig. 2. Comparison of XtaLk, NIC and BPLN. Bar plot highlighting the TPR at
0.10 FPR (TPR10FPR), TPR at 0.30 FPR (TPR40FPR) and the AUC. The vertical
dotted line indicates the AUC for a random classifier

receptors or only the TFs for each pathway. We observed nominal
changes among all three variations (Supplementary Section 3.4.1).
The improved performance of BPLN over NIC suggested that if mul-
tiple proteins in the two pathways interact with each other, these
two pathways may have a higher propensity to crosstalk. In add-
ition, for the variant of BPLN mentioned in Section 2.3, we
observed a decrease in AUC for the variant of BPLN
(Supplementary Section 3.4.2).

The AUC for each algorithm was marginally less on the KEGG-
protein network than on the KEGG-family network. However,
in the case of XTALK, paths in KEGG-protein crosstalk networks
were much longer than in KEGG-family networks. We discuss the
implications of these results in Section 4.

XtaLk outperformed both NIC and BPLN. Moreover, XTark did
not show any bias toward reporting pathway pairs that contained
many common nodes (Mann—Whitney P value 0.17 consider pairs
with a rank of 1 or 2; see Supplementary Section 3.5). These results
indicated that multiple short paths between receptors in A and TFs
in B are very good predictors of crosstalk. XTALK achieved the best
performance despite only using the receptors in A and the TFs in B
as input. In contrast, NIC and BPLN required knowledge of all pro-
teins annotated to both pathways. More importantly, XTALK re-
turned paths capable of transmitting a signal from receptors to TFs,
as opposed to a list of common proteins or a set of interactions con-
necting proteins in one pathway to those in the second. We demon-
strate the usefulness of this property of XTalK in the remaining
sections.

3.2 AUC value depends on pathway A

Upon examining XTALK results more carefully, we observed that
the AUC values varied considerably from one pathway to another
(Fig. 3). XTtALK achieved an average AUC of 0.67 across all path-
ways and performed best on the toll-like receptor signaling path-
way (AUC 0.86, 28% above average). Six pathways obtained an
AUC above 0.70, while 10 pathways showed performance at or
above average. Three pathways, TGF-B, Prolactin and Estrogen,
achieved AUCs at or below random. We discuss these three path-
ways in Section 3.3. When we optimized k with respect to each
pathway B, XTALK achieved a slightly smaller AUC of 0.60 (data
not shown).

1.0
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Fig. 3. Pathway-specific AUC values for XTaLk on the KEGG- family network.
The asterisk (*) denotes the three pathway pairs we discuss in Section 3.3
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3.3 Literature support for false-positive pairs involving
pathways with low AUC values
In Figure 3, the TGF-B, Prolactin and Estrogen pathways have the
three lowest AUC values (0.51, 0.50 and 0.46, respectively). We con-
sidered all the false predictions (i.e. those pathway pairs not in the
gold standard) involving one of these pathways as A. There were 15
such pathway pairs. For each of these pairs, we sought to identify pub-
lications that supported the crosstalk suggested by Xtark. To this end,
we followed a two-step procedure. We first repeated the PubMed
query originally used when establishing the gold standard dataset. If
this query did not yield any publications to support the crosstalk, we
then utilized the crosstalk network returned by Xtark. We identified
proteins participating in paths for small values of k in this network.
We either added these protein names to the PubMed query or replaced
pathway names with the names of these proteins before repeating our
search for relevant literature. Through these steps, we found literature
support for 9 of the 15 false-positive pathway pairs (Table 1).

These nine pairs fell into three categories. (i) The paper support-
ing one pair was published in 2015, 1 year after we created the gold
standard. (ii) We missed three pairs in the gold standard; we

Table 1. Literature validation for false-positive pathways involving
pathways with low AUCs

Pathway A Pathway B Literature support

Crosstalk network used to modify PubMed queries

Estrogen TNF Xing et al. (2007)
Prolactin Wnt Zheng et al. (2011)
Prolactin Neurotrophin Sun et al. (2014)
Prolactin GnRH Hodson et al. (2010)
TGF-p HIF1 Sanchez-Elsner

et al. (2002)
Literature published after curation of gold standard

Estrogen Hippo Zhou et al. (2015)
Confirmation missed during manual curation

Estrogen HIF1 Kazi et al. (2009)

Prolactin VEGF Clapp et al. (2009)

TGE-B GnRH Ying et al. (1986)

()

RL

Q-O-O1r
OG-}

Oa020

SPZ*./] UN/ %OS ’NFAT‘ ’CREB

’CREB

(a) (b) (c) (d) (e)

Fig. 4. Paths used to facilitate literature validation. (a) Estrogen to TNF, (b)
Prolactin to Wnt, (c) Prolactin to Neurotrophin, (d) Prolactin to GnRH and (e)
TGF-B to HIF1. Triangles: receptors (in pathway A); rectangles: TFs (in path-
way B); circles: intermediate proteins. The protein SP1/JUN/FOS participates
in both pathway A and pathway B

attribute these instances to the manual nature of our curation pro-
cess. (iii) Notably, we discovered the papers supporting the remain-
ing five pathway pairs only after we modified the PubMed query by
including important proteins present in the crosstalk networks com-
puted by XtaLK. In other words, when we used simpler queries that
involved only the names of the pathways and the word ‘Crosstalk’
or ‘Pathway’, these papers were either not present in the result or
were ranked as being of low relevance by PubMed. Notably, each of
these papers reported a path of interactions contained in XTALK ’s
crosstalk networks (Fig. 4). For example, the successful query used
to identify the crosstalk from TGF-B to HIF1 was ‘TGF beta HIF
SMAD SP1’. The seventh path in the crosstalk network which con-
nects the receptor TGFBR to the TF HIF1A (Fig. 4e) suggested this
query. These results underscore both the considerable difficulties
and subtleties in constructing a gold standard database of pathway
crosstalk and the value of XTALK in discovering crosstalk events.

3.4 Performance of X7aLk from an experimentalist’s
perspective

As a complementary way to evaluate the performance of XTALK, we
took the viewpoint of an experimentalist, who we expect will study
the highest-ranking pathway pairs for validation. To this end, we
investigated top ranking pairs identified by XTark from Section 3.1.
Specifically, we considered pairs with a rank of 1, 2 or 3 for each
pathway A. For these 51 pathway pairs, XTALK achieved a precision
of 75%. In fact, all pairs with a rank of 1 were members of the gold
standard dataset (i.e. true positives). Of the pathway pairs with a
rank of 1, 12 involved MAPK as pathway B. It is not surprising that
several pathways crosstalk with the MAPK pathway since many sig-
naling responses converge on members of this pathway (Wagner
and Nebreda, 2009). As a case study, we explore the crosstalk net-
work for a rank 1 pathway pair that does not include MAPK in
Section 3.6.

Next, we considered those top-ranking pathway pairs that were
false positives. Table 2 summarizes these pairs. At the rank of 2 and
3, Xtaik identified three and nine false-positive pathway pairs,
respectively. We used the crosstalk networks returned by XTaALK to
assist in literature curation for these 12 false-positive predictions.

Table 2. False-positive predictions made by XTalk with a rank of
3orless

Pathway A Pathway B Literature support
Rank 2
NF kappa B Neurotrophin Lietal. (2001)
HIF1 Neurotrophin Yin et al. (2012)
Prolactin TLR —
Rank 3
VEGF Estrogen —_
NF kappa B TLR Wardill ez al. (2015)*
Jak-STAT Neurotrophin de Araujo et al. (2009)
Adipocytokine TLR —
TNEF TLR Hayden and Ghosh
(2014)
GnRH TNF —
MAPK Wnt Zhang et al. (2014)
TLR Neurotrophin Okun et al. (2011)
Estrogen TNF —

We provide a reference for all pathway pairs with literature support, with
‘— indicating no literature support.
?The NF«xB and Toll-like Receptor (TLR) pathways share a branch.
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Table 3. Literature support for top-ranking pathway pairs in the KEGG test set

No. values of k Pathway A Pathway B Literature support

13 mTOR MAPK Sunayama et al. (2010)
p33 signaling MAPK Bragado et al. (2007)
Hippo Cell cycle Hergovich and Hemmings (2012)
Wnt Cell cycle Ille et al. (2007)
TNF Cytosolic DNA sensing Konno et al. (2009)
Melanogenesis T cell receptor signaling —
Apoptosis MAPK —
Jak-STAT PI3K Akt signaling Himpe and Kooijman (2009)
Adipocytokine T cell receptor signaling Cassano et al. (2014)
Hedgehog Prolactin —

12 FeyR-mediated phagocytosis T cell receptor signaling Gallo ez al. (2010)
TGF-p Adherens junction Willis and Borok (2007)
Thyroid hormone synthesis T cell receptor signaling Mullins ez al. (1995)

11 Oocyte meiosis MAPK —
B cell receptor signaling PI3K Akt signaling Castello et al. (2013)
NF«B Cytosolic DNA sensing Konno et al. (2009)*
Progesterone-mediated oocyte maturation MAPK Cutini et al. (2009)
Prolactin PI3K Akt signaling Belugin et al. (2013)

10 Calcium signaling Wnt Wu et al. (2012)P
Cytokine cytokine receptor interaction Jak-STAT Donegan et al. (2015)
Chemokine signaling Estrogen Sauve et al. (2009)

PI3K Akt signaling

ECM receptor interaction

Cell adhesion molecule

Gap junction

Antigen processing and presentation
VEGF

Chemokine signaling Jin et al. (2015)

PI3K Akt signaling Yu et al. (2015)
PI3K Akt signaling Ni et al. (2013)
Wnt Yu et al. (2012)
Estrogen —

PI3K Akt signaling Geng et al. (2015)

‘— indicates instances where we identified no evidence of crosstalk.
*The Cytosolic DNA sensing pathway is a branch of the NF«B pathway.

The Wnt signaling pathway includes a branch of the calcium signaling pathway.

We identified publications supporting two of the three false-positive
pairs at rank 2. Similarly for pathway pairs with a rank of 3, we
identified literature to support five of the nine false-positive pairs. In
Section 3.7, we discuss how the XTALKk network helped to confirm
the crosstalk from the NF«B to the Neurotrophin pathway.

3.5 Evaluating XtaLk on the KEGG and

NCI-PID test sets

Encouraged by the performance of XTALK on the curated set of path-
way pairs, we extended our analysis to the KEGG test set of 658
pathway pairs (Supplementary Section 2.3). Since we did not have a
gold standard for these pairs, we could not find values of k that opti-
mized the AUC. Hence, we opted not to select any specific value of
k. Instead, for each pathway A and for each value of k in the set
{1-10,20,25,50}, we ranked each pair (A, B) in increasing order
of P value. Next, for each pair (A, B), we counted the number of val-
ues of k for which that pair had the smallest P value (i.e. rank 1) for
pathway A. We ordered all pairs by this statistic. This methodology
gave priority to those pathway pairs whose rank was relatively in-
sensitive to a specific value of k.

We considered all pathway pairs that occurred with a rank of 1
for at least 75% of the values of k. In total, 27 pathway pairs met this
criterion (Table 3). For each of these pairs, we queried PubMed to
determine whether the pathways in the pair are known to crosstalk.
We used key proteins from the crosstalk networks to find publications
confirming five pathway pairs. This performance on the test set
demonstrates the applicability of XTALK to novel pathway pairs.

To test XTALK on larger and alternative datasets, we applied it to
the pathways in the NCI-PID database (Schaefer et al., 2009) and a
comprehensive human physical and regulatory interaction network
(Supplementary Sections 2.1 and 2.5). The size of this dataset (115
pathways) precluded the creation of a new gold standard. This NCI-
PID test set contained 7254 pairs. We applied the same validation pro-
cedure as for the KEGG test set. Of the 18 pathway pairs that met the
ranking criterion, we found evidence in the literature for all but four
pairs, yielding a precision of 78% (Table 4). We utilized the crosstalk
network produced by Xtark for the validation of six pathway pairs.

3.6 Crosstalk from the Hippo to the TGF-B pathway

We turn our attention to the crosstalk network for a pathway pair
present in the gold standard that was highly ranked by XtaLx on the
KEGG-family network. XTaLK estimated the P value of the cross-
talk from the Hippo pathway to the TGF-B pathway in the KEGG-
family network as 1.3 x 1073, giving this pair a rank of 1 (with
the Hippo pathway as pathway A). Figure 5 displays a simplified
version of this crosstalk network connecting receptors in the Hippo
pathway to each TF in the TGF-B pathway through k=10 shortest
paths; Supplementary Figure SS displays the complete network,
including all phosphorylation events.

In KEGG, the Hippo pathway shares receptors with the TGF-$8
pathway, e.g. TGFBR1 and TGFBR2. Surprisingly, KEGG repre-
sents these two proteins as a single node in the Hippo pathway
but as individual proteins as well as a complex in the TGF-f} path-
way. On the basis of our definitions of receptors (Supplementary
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Table 4. Literature support for top-ranking pathway pairs in the NCI-PID test set

No. values of k Pathway A Pathway B Literature support

11 EphrinB EPHB pathway PDGEFR beta signaling pathway Nakayama et al. (2013)
ALK1 pathway Regulation of Telomerase Li et al. (2006)
ATEF 2 TF network IL23-mediated signaling events Piccaluga et al. (2014)

Signaling events mediated by PTP1B

Nephrin Nephl signaling in the kidney podocyte
Wnt signaling network

Insulin Pathway

Hepatocyte Growth Factor Receptorb
CXCR4-mediated signaling events

PDGFR alpha signaling pathway

Regulation of Telomerase

amb2 Integrin signaling

Plasma membrane estrogen receptor signaling
EphrinA EPHA pathway

Signaling events regulated by Ret tyrosine kinase
IGF1 pathway

IL5-mediated signaling events

ErbB4 signaling events

IL6-mediated signaling events Owen et al. (2015)
PDGEFR beta signaling pathway —

Regulation of nuclear beta catenin® Lien and Fuchs (2014)
PDGEFR beta signaling pathway Giri et al. (2012)
PDGEFR beta signaling pathway Kodama et al. (2000)
Regulation of Telomerase Qu et al. (2008)
CXCR4-mediated signaling events Sciaccaluga et al. (2013)
CXCR4-mediated signaling events —

PDGEFR beta signaling pathway Bezuidenhout et al. (2009)
PDGEFR beta signaling pathway Finlay et al. (2004)
PDGEFR beta signaling pathway Miao et al. (2001)
PDGEFR beta signaling pathway —

PDGEFR beta signaling pathway Ko et al. (1993)
IL6-mediated signaling events Burnham et al. (2014)
IL6-mediated signaling events —

‘— indicates pairs where we identified no evidence of crosstalk.

*The full name is ‘Regulation of nuclear beta catenin signaling and target gene transcription’.

"The full name is ‘Signaling events mediated by Hepatocyte Growth Factor Receptor (¢ Met)’.

Section 2.2), we considered both the individual proteins as well
as the node containing both of them to be receptors in the
Hippo pathway. In our discussion below, we focus on the cross-
talk network in its entirety rather than on individual paths
within it.

The Hippo pathway is known to crosstalk with the TGF-B path-
way [see Varelas and Wrana (2012) for a review of Hippo
signaling]. Evidence in the literature indicates two distinct mechan-
isms of crosstalk: through activation and by inhibition. Our cross-
talk network captures both phenomena. The activating crosstalk
(yellow polygon in Fig. 5) occurs after TGFBR1/2 phosphorylates
SMAD4 and SMAD2/3. Subsequently, WWTR1/YAP1 (both mem-
bers solely of the Hippo pathway) binds to SMAD2/3 and SMAD4
to form a heteromeric complex (Mauviel ez al, 2011). After
SMAD?2/3/4 and WWTR1/YAP bind, the complex translocates to
the nucleus and causes the transcription of TGF-B target genes
(Varelas et al., 2010).

To cause inhibitory crosstalk, YAP forms a complex with
SMAD?7 in the cytoplasm and represses TGFBR activity (Varelas
and Wrana, 2012). Our crosstalk network includes both the com-
plex formation between SMAD7 and YAP1 and the inhibition of
TGFBR1/2 by YAP1 and by SMAD?7 (pink polygon in Fig. 5). This
negative crosstalk manifests under conditions of high cell density
even in the presence of TGF-B, the ligand for the TGF-B pathway
(Varelas and Wrana, 2012). High cell density activates the Hippo
pathway, causing the formation of the YAP1/SMAD?7 complex and
subsequent inhibition of TGF-B receptors. This process decreases
the expression of TGF-p target genes.

3.7 Crosstalk from NF«B to neurotrophin pathway

Using the KEGG-family network, XTALK identified three pathway
pairs at a rank of 2 that were not in the gold-standard dataset
(Table 2). Our original query using only pathway names did not
provide conclusive evidence of crosstalk for any of these pairs.
However, when we modified the queries to include the names of
proteins involved in key interactions in XTALK’s crosstalk networks,

Fig. 5. Network computed by Xtak for crosstalk from the Hippo signaling
pathway (A) to the TGF- signaling pathway (B). Blue: proteins/edges in path-
way A; purple: proteins/edges in pathway B; green: proteins/edges in both
pathways; gray: proteins in neither pathway; black: edges annotated to nei-
ther pathway; triangles: receptors; rectangles: TFs. Undirected edges repre-
sent group/complex interactions. Solid/dashed edges represent activating/
inhibitory interactions. The label ‘+p” denotes phosphorylation interactions
discussed in the text. Please see the text for a discussion of the yellow and
pink polygons

we succeeded in finding the appropriate publications. These results
point to the usefulness of crosstalk networks.

We focus our discussion on the crosstalk from the NFxB to the
Neurotrophin pathway. The NF«B signaling pathway is involved in
a diverse set of functions, especially those related to the innate and
adaptive immune response (Hayden and Ghosh, 2008). The
Neurotrophin signaling pathway regulates neural processes such as
neuronal survival, maintenance of axonal and dendritic networks
and synaptic plasticity (Longo and Massa, 2013). The NFxB path-
way contains three receptor families: Interleukin-1 receptors (IL1R),
tumor necrosis factor receptor (TNFR) and toll-like receptor (TLR).
The Neurotrophin pathway contains many TFs, including FOS,
JUN, ATF and NFxB. In addition to a direct activation edge from
TLR4 to NFKB1/RELA, the crosstalk network returned by Xtark
includes signaling paths that start at ILIR1 and TNFRSF11A
(RANK) (Fig. 6).
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Fig. 6. Crosstalk network constructed by Xtaik from the NFxB Pathway (A) to
the Neurotrophin Pathway (B) using the KEGG-family network. See Figure 5
for details on node and edge colors and shapes. Supplementary Figure S6
displays the complete network

We first discuss the signaling paths beginning at the TNF recep-
tor TNFRSF11A. The crosstalk network suggests that activated
TNFRSF11A binds with either TRAF2 or TRAF6. TRAF2 and
TRAF6 can themselves interact. TRAF6 activates MAPKS8/9/10,
which then activates JUN/ATF2, JUN/FOS and several other TFs.
These heterodimers of the FOS and ATF family proteins with JUN
are commonly referred to in the literature as AP1 (van Dam and
Castellazzi, 2001). Lee et al. discovered a similar signaling path
that explained the role of TNFRSF11A (RANK) in the activation
of AP1 (Lee et al., 2000). They proposed a path that started
with TNFRSF11A, signaled through TRAF2 or TRAF6 until
MAPKS8/9/10, which regulates AP1 activity. The authors noted that
the signaling from TRAF6 to MAPKS8/9/10 was mediated through
ASK1, MEKK1, NIK and SEK1. Our crosstalk network contained
the core reactions involved in this signaling event. We did not re-
cover interactions involving ASK1, MEKK1, NIK or SEK1.

Next, we discuss the signaling reactions that begin at IL1R and
terminate at JUN/ATF2, JUN/FOS and other TFs. According to our
crosstalk network, IL1R activates TRAF6, which activates MAPKS/
9/10, thereby regulating AP1 activity. Many studies have suggested
that IL1 signaling activates AP1 (Li et al., 2001, 1999; O’Neill and
Greene, 1998). The response of AP1 after IL1 signaling is mediated
by TRAF6 (Li et al., 1999). To the best of our knowledge, these
interactions have not been documented in neural contexts.

4 Discussion

We have developed XTaLK, a novel path-based approach to identify-
ing pathway crosstalk. XTALK identifies crosstalk by computing sev-
eral short paths along which an external signal can be transduced
from the receptors of one pathway to the TFs of the other. When
evaluated upon a literature-curated gold standard set of pathway
pairs, XTALK achieved an AUC of 65%, a value much higher than
node- and edge-based approaches (NIC and BPLN, respectively).
We observed a high variance in AUC from one pathway to another.
Focusing on the three pathways with the lowest AUCs, we succeeded
in finding support in the literature for 60% (9 out of 15) false-
positive pairs involving these pathways. Conversely, taking an ex-
perimentalist’s perspective, we focused on false positives among
highly ranked pairs and found support in the literature for 59% (7
out of 12) pairs. It is notable that search queries yielded the relevant
publications only when we augmented the pathway names with key
proteins that mediated the crosstalk. We learnt the identities of these
proteins only after examination of the crosstalk networks. These re-
sults underscore both the considerable difficulties and subtleties in

constructing a gold standard database of pathway crosstalk and the
value of XTaLK in discovering crosstalk events.

In the second analysis, we evaluated crosstalk on two test sets of
pathway pairs, one from KEGG and the other from NCI-PID, that
we did not consider for inclusion in the gold standard. The literature
contained evidence for approximately 80% of pairs ranked highly
by XTtALK for each dataset. These results suggest that an experimen-
talist interested in a poorly studied pathway or one that is not in our
gold standard may benefit from focusing experiments on the top-
ranked predictions made by XtaLk. Moreover, crosstalk networks
can provide useful suggestions on the underlying mechanisms.

For the analysis of KEGG pathways, we used a signaling net-
work derived from all relations in the KEGG database. We analyzed
two versions of this signaling network: KEGG-family and KEGG-
protein. The value of k for each pathway in the KEGG-protein
was on average 14 times larger than that for the KEGG-family.
During the construction of the KEGG-protein network, we ex-
panded each interaction between two nodes in the KEGG-family
network into a complete bipartite graph between the member pro-
teins from each node in the KEGG-family (Supplementary Section
2). This transformation effectively increased the number of (short)
paths between two proteins in the KEGG-protein network when
compared with the corresponding families in the KEGG- family net-
work. Consequently, the crosstalk networks computed upon apply-
ing XTALK to KEGG-family were much smaller and easier to
interpret than for KEGG-protein.

Even more importantly, the paths in the KEGG-protein net-
work can be less informative. As we illustrated in Section 3.6, the
role of YAP (activating or inhibitory) differed based on the node in
the KEGG-family network to which it belonged. Elucidating these
context-dependent roles would not have been possible with the
KEGG-protein network, which would have collapsed both ver-
sions of YAP into a single node. Notwithstanding XTaLK’s high pre-
cision on NCI-PID pathways, physical and regulatory interaction
networks can suffer from similar problems. For these reasons, we
encourage a move toward complex- or protein family level networks
such as KEGG- family, since (i) they represent the underlying biol-
ogy of signaling closely and (ii) the results with them are easier to in-
terpret. This recommendation is in line with recent trends to
explicitly represent protein families/complexes and reactions among
them in network models (Fukuda and Takagi, 2001; Hu et al.,
2007; Klamt et al., 2009; Ritz et al., 2014).

Finally, we acknowledge that identifying pathway crosstalk re-
mains a challenging problem. Although XTaLk achieved higher AUC
than NIC and BPLN, XTalK’s performance may be further im-
proved. There may be several reasons for this performance: (i) while
creating the gold-standard dataset, we missed curating the correct
publications documenting crosstalk for some pairs of pathway due
to the inherent difficulty of phrasing the query correctly, as demon-
strated in Section 3.3; (ii) the crosstalk between two pathways has
not yet been discovered, e.g. a paper describing the crosstalk from
the Estrogen to the Hippo pathway was published a year after we
finished the gold-standard dataset (Zhou et al., 2015); (iii) the back-
ground signaling network may not contain the interactions respon-
sible for the crosstalk or (iv) as a community, we have an incomplete
understanding about different characteristics of crosstalk.

We are actively considering ways to address these challenges and
limitations. NLP-based methods can avoid the pitfalls of manual
curation, especially if we train them on the specific sentences docu-
menting crosstalk that we have included in our gold standard. We
are considering extensions of XTALK that explicitly take into account
the information on whether an interaction is activating or
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inhibitory. It is also important to consider cell and tissue specificity.
XTALK and its future versions promise to serve as powerful analytic
methods to discover novel pairs of crosstalking pathways and the
underlying mechanisms.
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