
Systems biology

XTALK: a path-based approach for identifying

crosstalk between signaling pathways

Allison N. Tegge1,2,*, Nicholas Sharp1 and T. M. Murali1,3,*

1Department of Computer Science, 2Department of Statistics and 3ICTAS Center for Systems Biology of

Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA

*To whom correspondence should be addressed.

Associate Editor: Igor Jurisica

Received on October 22, 2014; revised on September 1, 2015; accepted on September 4, 2015

Abstract

Motivation: Cells communicate with their environment via signal transduction pathways. On

occasion, the activation of one pathway can produce an effect downstream of another pathway, a

phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs

rely on simple overlap statistics.

Results: We present XTALK, a path-based approach for identifying pairs of pathways that may cross-

talk. XTALK computes the statistical significance of the average length of multiple short paths that

connect receptors in one pathway to the transcription factors in another. By design, XTALK reports

the precise interactions and mechanisms that support the identified crosstalk. We applied XTALK to

signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set

of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which XTALK

achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over

the closest competing approach. The area under the receiver operator characteristic curve varied

with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level.

We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000

pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature

(81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by XTALK that ac-

curately recovered known mechanisms of crosstalk.

Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.

edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-

bioinformatics-xtalk.

Contact: ategge@vt.edu, murali@cs.vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cells communicate with their environment through signal trans-

duction pathways. Typically, a signaling pathway contains a well-

defined set of receptors and transcription factors (TFs). Upon

activation of the pathway’s receptors, a series of signaling inter-

actions activate the TFs in that pathway, thereby regulating the ex-

pression of target genes as a down-stream response. On occasion,

these intra-cellular signal cascades result in off-target responses,

commonly known as pathway crosstalk. More specifically,

crosstalk occurs when the activation of the receptors of a specific

signaling pathway results in the down-stream response being exe-

cuted by the TFs of a different pathway (Housden and Perrimon,

2014). Such a down-stream response manifests itself through

changes in the expression of the second pathway’s target genes.

Signaling pathway crosstalk may lead to several cancers (Elinav

et al., 2013; López-Otı́n and Hunter, 2010) and has also been

implicated in host defense against pathogens in plants (Kunkel and

Brooks, 2002).
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Computational methods have been developed to systematically

predict crosstalk. The simplest approach, which we call nodes-in-

common or NIC in this article, asks if two pathways share any pro-

teins based on the observation that shared proteins may mediate

crosstalk (Donato et al., 2013; Knight and Knight, 2001; Taniguchi

et al., 2006). Hsu and Yang (2012) estimated pathway crosstalk

based on similarities in Gene Ontology annotations. Interaction-

based methods try to identify crosstalk by quantifying the connectiv-

ity between pathway pairs. Given a protein–protein interaction

network, Li et al. (2008) and McCormack et al. (2013) linked two

pathways A and B if more edges connected the proteins in A to the

proteins in B than expected by chance in a randomly wired network.

In the case when two pathways are known to crosstalk, Zielinski

et al. (2009) developed a method that used a combined signaling

network to identify the protein(s) responsible for crosstalk. A similar

approach, biological process linkage networks (BPLN), linked two

processes A and B if the proteins annotated to A were connected to

more proteins annotated to B than expected by chance (Dotan-

Cohen et al., 2009). In this article, we selected BPLN as an exemplar

of the interaction-based techniques.

These approaches have several drawbacks. The NIC methods

cannot identify crosstalk when the two pathways have very few or

no common proteins. For example, MAPK pathway and the Hippo

pathway (Reddy and Irvine, 2013) crosstalk but share only a few

proteins. More importantly, these methods treat a pathway simply

as a set of proteins. While the edge-based approaches do use inter-

actions between proteins, they fail to identify crosstalk when the

members of pathway A do not interact with the members of path-

way B, as in the case of crosstalk from the Hif-1 pathway to the

Wnt pathway (Zhang et al., 2013). More importantly, they do not

consider the canonical structure of a pathway: a set of receptors con-

nected via regulatory, signaling and physical interactions to a set of

TFs. Therefore, they are unlikely to discover the mechanisms or the

sequence of interactions that underlie pathway crosstalk.

To develop our method XTALK, we started by considering the

biological definition of crosstalk. Crosstalk occurs between two sig-

naling pathways A and B when the stimulation at the receptors of

pathway A causes a cellular response downstream of pathway B,

usually carried out by the TFs in B. We reasoned that there must be

at least one directed path of signaling and regulatory interactions

along which a signal can traverse from some receptor of pathway A

to some TF in pathway B. We expected these paths to be short, so

that the signal could travel rapidly to affect the response. Crosstalk

can also be asymmetric: A may crosstalk with B (i.e. stimulation of

A’s receptors controls at least one of B’s TFs) but B may not cross-

talk with A (i.e. stimulation of B’s receptors has no effect on any of

A’s TFs) as in the case of crosstalk from the insulin-like growth fac-

tor-I pathway to the leptin pathway (Ozbay and Nahta, 2008).

Using these guiding principles, we developed XTALK to identify the k

shortest paths from any receptor in pathway A to each TF in path-

way B (Fig. 1), where k is a user-defined parameter. We imple-

mented an efficient dynamic-programming based approach to

exactly compute the statistical significance of the crosstalk. By de-

sign, XTALK reports the precise sequences of interactions and mech-

anisms that support the identified crosstalk between pathways.

To the best of our knowledge, databases of pathway crosstalk

are currently unavailable for validation of methods such as XTALK.

To overcome this challenge, we created a gold-standard set of dir-

ected pathway pairs that crosstalk. To create this dataset, we re-

stricted our definition of crosstalk to only those events that occur

when an interaction (e.g. activation, inhibition or binding) between

two proteins mediates the crosstalk. We acknowledge that several

other mechanisms of crosstalk exist, including protein–protein inter-

action events, feedback loops and when members of pathway B are

downstream targets of TFs in pathway A. We plan to incorporate

these mechanisms in the future. We studied over 400 publications

for evidence of crosstalk between 272 pairs of pathways in the

KEGG database Kanehisa et al. (2012). We found literature support

for crosstalk between 132 pairs. These pairs formed our gold stand-

ard dataset.

We evaluated XTALK in several ways.

1. We used receiver operator characteristic (ROC) curves to com-

pare XTALK, NIC and BPLN for the 272 pathway pairs that we

had explicitly considered for inclusion in the gold standard

(Section 3.1). XTALK achieved an area under the ROC (AUC) of

0.65, which was an improvement of 12% over its closest com-

petitor BPLN.

2. We observed that the AUC of XTALK varied from one pathway

to another (Section 3.2). Therefore, we studied the three path-

ways with the lowest AUCs. We found support in the literature

for 9 out of 15 (60%) false-positive pathway pairs (Section 3.3).

3. We also considered XTALK ’s results from an experimentalist’s

perspective by examining the top-three highest ranking pairs for

each pathway. XTALK had a precision of 0.75 for these ranks.

We were able to find support in the literature for seven false

positives. Notably, in both this and the previous analysis, we

were able to find the appropriate publications only after includ-

ing proteins in XTALK ’s crosstalk networks in our PubMed

queries.

4. We expanded our analysis by applying XTALK to a comprehen-

sive set of 658 signaling-related pathway pairs in the KEGG

Fig. 1. Workflow for XTALK. XTALK takes as input a signaling network, a set of receptors in pathway A and a set of TFs from pathway B. XTALK enumerates k paths

from the receptors to each TF, calculates a crosstalk statistic v(A,B) and computes a P value representing the significance of crosstalk from pathway A to pathway

B. XTALK also returns a crosstalk network representing the set of interactions responsible for the identified crosstalk. Triangles: receptors in pathway A; rectangles:

TFs in pathway B
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database. We searched the literature for the top 27 pathway

pairs among those that we did not consider for the gold stand-

ard. XTALK achieved 81% precision for these predictions

(Section 3.5).

5. To assess the wider utility of XTALK, we applied it to more than

7000 pathways pairs in the NCI-PID database (Schaefer et al.,

2009). As in the case of the KEGG database, XTALK achieved

high precision (78%) among the top-ranking pathway pairs.

6. Finally, we highlight the utility of the XTALK networks in re-

covering the known mechanisms of crosstalk and assisting in the

manual curation of pathway pairs.

2 Algorithms

In this section, we describe XTALK (Section 2.1) and two other meth-

ods for estimating crosstalk: NIC, which uses the set of nodes in

common between two pathways (Section 2.2), and BPLN, which is

based on the set of nodes in one pathway that interact with nodes in

the other pathway (Section 2.3). Supplementary Section 2 describes

the datasets we use.

2.1 XTALK : average length of the k shortest paths
On the basis of the criteria outlined in Section 1, we define our

measure of crosstalk as follows. Given two signaling pathways A

and B, let RA (respectively, RB) denote the set of receptors in A (re-

spectively, B). We define the sets TA and TB of TFs in the two path-

ways similarly. XTALK takes the following inputs: (i) unweighted,

directed protein signaling network G ¼ ðV;EÞ, (ii) the sets RA and

RB of receptors in A and B, respectively, and (iii) the sets TA and TB

of TFs in the pathways. Let p(r,t,k) denote the kth shortest path in

G from receptor r to TF t and d(r,t,k) denote the length of path

p(r,t,k). When k¼1, p(r,t,1) is the shortest path between r and t.

We similarly define p(RA,t,k) as the kth shortest path from the set of

receptors RA to the TF t and the length of this path as d(RA,t,k); in

this definition, we consider paths that start at any member of RA.

We now define the crosstalk statistic between pathways A and B as

vðA;B; kÞ ¼ 1

knB

X

t2TB

Xk

l¼1

dðRA; t; lÞ;

where nB ¼ jTBj and k is a user-specified parameter. If there were

only k0 < k paths from a set of receptors to a TF, we considered

only k0 paths in the innermost summation.

In this formula, for each TF t in B, we compute the lengths of the

k shortest paths in G from the receptor set RA to t. We define the

value of the crosstalk between A and B to be the average of these

lengths, with the average taken over all the TFs in B that are reach-

able from at least one receptor in A. Note that this statistic is defined

only if there is at least one path from a receptor in RA to a TF in TB.

The identity of the receptors in RA are not important, just as long as

the signal can traverse (quickly) from some receptor in A to the TF

in B. Smaller values of v(A,B,k) are more indicative of crosstalk

from A to B. In general, the statistic is asymmetric, i.e.

vðA;B; kÞ ¼ vðB;A;kÞ. In practice, to compute p(RA,t,k), we con-

nect an artificial source node r to each receptor r 2 RA and calculate

dðRA; t;kÞ as dðr; t; kÞ � 1 using Yen’s k-shortest loopless path algo-

rithm (Yen, 1971).

We acknowledge that there are other ways of combining these

shortest path lengths. We opted for this definition since it was sim-

ple, it satisfied our criteria, it was asymmetric and we could exactly

compute its statistical significance. We designed a dynamic pro-

gramming algorithm to quickly and exactly compute the statistical

significance of v(A,B,k) (Supplementary Section 1.1). We corrected

all reported P values for testing multiple hypotheses (Benjamini and

Hochberg, 1995).

2.2 Nodes common to pathways
The inputs to this method are (i) the proteins in pathway A and (ii)

the proteins in pathway B. We compute the number of proteins pre-

sent in both pathways and use the hypergeometric test to compute

the statistical significance of this overlap. We refer to this method as

NIC.

2.3 Edges crossing pathways
This approach considers whether two pathways connect via one or

more protein–protein interactions and if these connections occur

more frequently than expected at random, given an interactome. We

modify the BPLN method (Dotan-Cohen et al., 2009), which was

originally developed to identify links between genes annotated to

two (Gene Ontology) processes within undirected protein–protein

interactions. In our context, the inputs to BPLN are (i) an un-

weighted, directed protein signaling network G ¼ ðV;EÞ (as for

XTALK), (ii) the proteins in pathway A and (iii) the proteins in path-

way B. We compute the number of proteins q in pathway B, such

that q is not a member of A and there is some protein p in pathway

A, such that (p, q) is a (directed) edge in G. We compute the P value

for this statistic using the hypergeometric test. We also consider a

variant where we include q even when q is a member of pathway A.

2.4 Ranking pathway pairs
To establish a ranked list of pathway pairs for each method, we

grouped the pairs by pathway A and optimized the AUC of each

pathway A by considering multiple values of k (Supplementary

Section 3.2). We ordered pathway pairs by increasing P value and

assigned a rank rA;B to each pair. We then collated all pathway pairs

first sorting by rA;B and then by the P value of the pair.

2.5 Crosstalk networks and visualization
As part of its calculations, XTALK produces a crosstalk network,

which is the union of kjTBj shortest paths fpðRA; t; lÞ;
t 2 TB; 1 � l � k}. This network represents the potential set of sig-

naling interactions responsible for the crosstalk from pathway A to

pathway B. We visualize our crosstalk network using GraphSpace,

an internally developed graph-sharing website. We provide the

networks computed by XTALK at http://graphspace.org/graph-

s?tags=2015-bioinformatics-xtalk. See Supplementary Section 1.2

for more details on GraphSpace.

3 Results

We studied the KEGG and NCI-PID databases. We divided all the

pathway pairs we analyzed into three sets (Supplementary Sections

2.3–2.5): (i) the KEGG curated set containing the 272 pathway

pairs we considered for inclusion in the gold standard; (ii) the

KEGG test set containing 678 other pathway pairs and (iii) the

NCI-PID test set containing 7254 pathway pairs. We performed

several types of evaluations. KEGG curated set: First, we used it to

compute AUC values for each algorithm (Section 3.1). We also com-

puted the AUC values for each pathway individually (Section 3.2).

Second, for the pathways with the lowest AUCs, we used XTALK’s

crosstalk networks to search the literature for support for false-posi-

tive predictions (Section 3.3). Third, in a complementary evaluation,

we studied the false-positive pairs among the highest ranking results
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for each pathway, since an experimentalist is likely to be interested

in following such predictions for validation (Section 3.4). Test sets:

We considered the highest-ranked pairs of pathways computed by

XTALK for each of the two test sets (Section 3.5). We estimated the

precision of XTALK by determining which pairs contained support in

the literature for crosstalk. For these analyses, we only considered

XTALK since it outperformed NIC and BPLN on the first analysis, as

we show in Section 3.1. Finally, we discuss the crosstalk networks

for specific top-ranked pathway pairs (Sections 3.6 and 3.7).

3.1 Comparison of XTALK, NIC and BPLN
We compared the performance of XTALK to that of NIC and BPLN

on the basis of the AUC, the true-positive rate (TPR) and the

false-positive rate (FPR) on both the KEGG-family and the KEGG-

protein networks (Supplementary Section 2.1).

Figure 2 highlights the values of TPR10FPR, TPR30FPR and

AUC for XTALK, BPLN and NIC on the KEGG-family and KEGG-

protein networks. Several trends emerged from these plots. First,

the NIC approach performed poorly on both networks (AUC of

0.50 and 0.48). Even at FPRs of 0.1 and 0.3, its TPR was at most

0.37. Second, on the KEGG-family network, BPLN showed a 16%

improvement in AUC over NIC (Fig. 2). BPLN’s TPR was larger

than that of NIC for values of FPR between 0.1 and 0.9

(Supplementary Fig. S1). Third, XTALK outperformed both NIC and

BPLN on both networks. The AUC of XTALK (0.65 on the KEGG-

family network and 0.64 on the KEGG-protein network) was at

least 12% higher than that of BPLN (0.58 on the KEGG-family

network and 0.56 on the KEGG-protein network). On the KEGG-

family network, XTALK achieved TPR10FPR of 0.30, an improve-

ment of 100% over NIC (TPR10FPR of 0.14) and over BPLN

(TPR10FPR of 0.15). XTALK dominated both NIC and BPLN for

FPR up to 0.8 (Supplementary Fig. S1).

On both networks, the performance of NIC was similar to that

of a random predictor, suggesting that it is neither necessary nor suf-

ficient for two pathways to crosstalk if they share proteins. We also

considered two variants of the NIC method that used only the

receptors or only the TFs for each pathway. We observed nominal

changes among all three variations (Supplementary Section 3.4.1).

The improved performance of BPLN over NIC suggested that if mul-

tiple proteins in the two pathways interact with each other, these

two pathways may have a higher propensity to crosstalk. In add-

ition, for the variant of BPLN mentioned in Section 2.3, we

observed a decrease in AUC for the variant of BPLN

(Supplementary Section 3.4.2).

The AUC for each algorithm was marginally less on the KEGG-

protein network than on the KEGG-family network. However,

in the case of XTALK, paths in KEGG-protein crosstalk networks

were much longer than in KEGG-family networks. We discuss the

implications of these results in Section 4.

XTALK outperformed both NIC and BPLN. Moreover, XTALK did

not show any bias toward reporting pathway pairs that contained

many common nodes (Mann–Whitney P value 0.17 consider pairs

with a rank of 1 or 2; see Supplementary Section 3.5). These results

indicated that multiple short paths between receptors in A and TFs

in B are very good predictors of crosstalk. XTALK achieved the best

performance despite only using the receptors in A and the TFs in B

as input. In contrast, NIC and BPLN required knowledge of all pro-

teins annotated to both pathways. More importantly, XTALK re-

turned paths capable of transmitting a signal from receptors to TFs,

as opposed to a list of common proteins or a set of interactions con-

necting proteins in one pathway to those in the second. We demon-

strate the usefulness of this property of XTALK in the remaining

sections.

3.2 AUC value depends on pathway A
Upon examining XTALK results more carefully, we observed that

the AUC values varied considerably from one pathway to another

(Fig. 3). XTALK achieved an average AUC of 0.67 across all path-

ways and performed best on the toll-like receptor signaling path-

way (AUC 0.86, 28% above average). Six pathways obtained an

AUC above 0.70, while 10 pathways showed performance at or

above average. Three pathways, TGF-b, Prolactin and Estrogen,

achieved AUCs at or below random. We discuss these three path-

ways in Section 3.3. When we optimized k with respect to each

pathway B, XTALK achieved a slightly smaller AUC of 0.60 (data

not shown).

Fig. 2. Comparison of XTALK, NIC and BPLN. Bar plot highlighting the TPR at

0.10 FPR (TPR10FPR), TPR at 0.30 FPR (TPR40FPR) and the AUC. The vertical

dotted line indicates the AUC for a random classifier
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Fig. 3. Pathway-specific AUC values for XTALK on the KEGG-family network.

The asterisk (*) denotes the three pathway pairs we discuss in Section 3.3
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3.3 Literature support for false-positive pairs involving

pathways with low AUC values
In Figure 3, the TGF-b, Prolactin and Estrogen pathways have the

three lowest AUC values (0.51, 0.50 and 0.46, respectively). We con-

sidered all the false predictions (i.e. those pathway pairs not in the

gold standard) involving one of these pathways as A. There were 15

such pathway pairs. For each of these pairs, we sought to identify pub-

lications that supported the crosstalk suggested by XTALK. To this end,

we followed a two-step procedure. We first repeated the PubMed

query originally used when establishing the gold standard dataset. If

this query did not yield any publications to support the crosstalk, we

then utilized the crosstalk network returned by XTALK. We identified

proteins participating in paths for small values of k in this network.

We either added these protein names to the PubMed query or replaced

pathway names with the names of these proteins before repeating our

search for relevant literature. Through these steps, we found literature

support for 9 of the 15 false-positive pathway pairs (Table 1).

These nine pairs fell into three categories. (i) The paper support-

ing one pair was published in 2015, 1 year after we created the gold

standard. (ii) We missed three pairs in the gold standard; we

attribute these instances to the manual nature of our curation pro-

cess. (iii) Notably, we discovered the papers supporting the remain-

ing five pathway pairs only after we modified the PubMed query by

including important proteins present in the crosstalk networks com-

puted by XTALK. In other words, when we used simpler queries that

involved only the names of the pathways and the word ‘Crosstalk’

or ‘Pathway’, these papers were either not present in the result or

were ranked as being of low relevance by PubMed. Notably, each of

these papers reported a path of interactions contained in XTALK ’s

crosstalk networks (Fig. 4). For example, the successful query used

to identify the crosstalk from TGF-b to HIF1 was ‘TGF beta HIF

SMAD SP1’. The seventh path in the crosstalk network which con-

nects the receptor TGFBR to the TF HIF1A (Fig. 4e) suggested this

query. These results underscore both the considerable difficulties

and subtleties in constructing a gold standard database of pathway

crosstalk and the value of XTALK in discovering crosstalk events.

3.4 Performance of XTALK from an experimentalist’s

perspective
As a complementary way to evaluate the performance of XTALK, we

took the viewpoint of an experimentalist, who we expect will study

the highest-ranking pathway pairs for validation. To this end, we

investigated top ranking pairs identified by XTALK from Section 3.1.

Specifically, we considered pairs with a rank of 1, 2 or 3 for each

pathway A. For these 51 pathway pairs, XTALK achieved a precision

of 75%. In fact, all pairs with a rank of 1 were members of the gold

standard dataset (i.e. true positives). Of the pathway pairs with a

rank of 1, 12 involved MAPK as pathway B. It is not surprising that

several pathways crosstalk with the MAPK pathway since many sig-

naling responses converge on members of this pathway (Wagner

and Nebreda, 2009). As a case study, we explore the crosstalk net-

work for a rank 1 pathway pair that does not include MAPK in

Section 3.6.

Next, we considered those top-ranking pathway pairs that were

false positives. Table 2 summarizes these pairs. At the rank of 2 and

3, XTALK identified three and nine false-positive pathway pairs,

respectively. We used the crosstalk networks returned by XTALK to

assist in literature curation for these 12 false-positive predictions.

Table 1. Literature validation for false-positive pathways involving

pathways with low AUCs

Pathway A Pathway B Literature support

Crosstalk network used to modify PubMed queries

Estrogen TNF Xing et al. (2007)

Prolactin Wnt Zheng et al. (2011)

Prolactin Neurotrophin Sun et al. (2014)

Prolactin GnRH Hodson et al. (2010)

TGF-b HIF1 Sanchez-Elsner

et al. (2002)

Literature published after curation of gold standard

Estrogen Hippo Zhou et al. (2015)

Confirmation missed during manual curation

Estrogen HIF1 Kazi et al. (2009)

Prolactin VEGF Clapp et al. (2009)

TGF-b GnRH Ying et al. (1986)

Fig. 4. Paths used to facilitate literature validation. (a) Estrogen to TNF, (b)

Prolactin to Wnt, (c) Prolactin to Neurotrophin, (d) Prolactin to GnRH and (e)

TGF-b to HIF1. Triangles: receptors (in pathway A); rectangles: TFs (in path-

way B); circles: intermediate proteins. The protein SP1/JUN/FOS participates

in both pathway A and pathway B

Table 2. False-positive predictions made by XTalk with a rank of

3 or less

Pathway A Pathway B Literature support

Rank 2

NF kappa B Neurotrophin Li et al. (2001)

HIF1 Neurotrophin Yin et al. (2012)

Prolactin TLR —

Rank 3

VEGF Estrogen —

NF kappa B TLR Wardill et al. (2015)a

Jak-STAT Neurotrophin de Araujo et al. (2009)

Adipocytokine TLR —

TNF TLR Hayden and Ghosh

(2014)

GnRH TNF —

MAPK Wnt Zhang et al. (2014)

TLR Neurotrophin Okun et al. (2011)

Estrogen TNF —

We provide a reference for all pathway pairs with literature support, with

‘—’ indicating no literature support.
aThe NFjB and Toll-like Receptor (TLR) pathways share a branch.
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We identified publications supporting two of the three false-positive

pairs at rank 2. Similarly for pathway pairs with a rank of 3, we

identified literature to support five of the nine false-positive pairs. In

Section 3.7, we discuss how the XTALK network helped to confirm

the crosstalk from the NFjB to the Neurotrophin pathway.

3.5 Evaluating XTALK on the KEGG and

NCI-PID test sets
Encouraged by the performance of XTALK on the curated set of path-

way pairs, we extended our analysis to the KEGG test set of 658

pathway pairs (Supplementary Section 2.3). Since we did not have a

gold standard for these pairs, we could not find values of k that opti-

mized the AUC. Hence, we opted not to select any specific value of

k. Instead, for each pathway A and for each value of k in the set

f1�10;20; 25; 50g, we ranked each pair (A, B) in increasing order

of P value. Next, for each pair (A, B), we counted the number of val-

ues of k for which that pair had the smallest P value (i.e. rank 1) for

pathway A. We ordered all pairs by this statistic. This methodology

gave priority to those pathway pairs whose rank was relatively in-

sensitive to a specific value of k.

We considered all pathway pairs that occurred with a rank of 1

for at least 75% of the values of k. In total, 27 pathway pairs met this

criterion (Table 3). For each of these pairs, we queried PubMed to

determine whether the pathways in the pair are known to crosstalk.

We used key proteins from the crosstalk networks to find publications

confirming five pathway pairs. This performance on the test set

demonstrates the applicability of XTALK to novel pathway pairs.

To test XTALK on larger and alternative datasets, we applied it to

the pathways in the NCI-PID database (Schaefer et al., 2009) and a

comprehensive human physical and regulatory interaction network

(Supplementary Sections 2.1 and 2.5). The size of this dataset (115

pathways) precluded the creation of a new gold standard. This NCI-

PID test set contained 7254 pairs. We applied the same validation pro-

cedure as for the KEGG test set. Of the 18 pathway pairs that met the

ranking criterion, we found evidence in the literature for all but four

pairs, yielding a precision of 78% (Table 4). We utilized the crosstalk

network produced by XTALK for the validation of six pathway pairs.

3.6 Crosstalk from the Hippo to the TGF-b pathway
We turn our attention to the crosstalk network for a pathway pair

present in the gold standard that was highly ranked by XTALK on the

KEGG-family network. XTALK estimated the P value of the cross-

talk from the Hippo pathway to the TGF-b pathway in the KEGG-

family network as 1:3� 10�3, giving this pair a rank of 1 (with

the Hippo pathway as pathway A). Figure 5 displays a simplified

version of this crosstalk network connecting receptors in the Hippo

pathway to each TF in the TGF-b pathway through k¼10 shortest

paths; Supplementary Figure S5 displays the complete network,

including all phosphorylation events.

In KEGG, the Hippo pathway shares receptors with the TGF-b
pathway, e.g. TGFBR1 and TGFBR2. Surprisingly, KEGG repre-

sents these two proteins as a single node in the Hippo pathway

but as individual proteins as well as a complex in the TGF-b path-

way. On the basis of our definitions of receptors (Supplementary

Table 3. Literature support for top-ranking pathway pairs in the KEGG test set

No. values of k Pathway A Pathway B Literature support

13 mTOR MAPK Sunayama et al. (2010)

p53 signaling MAPK Bragado et al. (2007)

Hippo Cell cycle Hergovich and Hemmings (2012)

Wnt Cell cycle Ille et al. (2007)

TNF Cytosolic DNA sensing Konno et al. (2009)

Melanogenesis T cell receptor signaling —

Apoptosis MAPK —

Jak-STAT PI3K Akt signaling Himpe and Kooijman (2009)

Adipocytokine T cell receptor signaling Cassano et al. (2014)

Hedgehog Prolactin —

12 FccR-mediated phagocytosis T cell receptor signaling Gallo et al. (2010)

TGF-b Adherens junction Willis and Borok (2007)

Thyroid hormone synthesis T cell receptor signaling Mullins et al. (1995)

11 Oocyte meiosis MAPK —

B cell receptor signaling PI3K Akt signaling Castello et al. (2013)

NFjB Cytosolic DNA sensing Konno et al. (2009)a

Progesterone-mediated oocyte maturation MAPK Cutini et al. (2009)

Prolactin PI3K Akt signaling Belugin et al. (2013)

10 Calcium signaling Wnt Wu et al. (2012)b

Cytokine cytokine receptor interaction Jak-STAT Donegan et al. (2015)

Chemokine signaling Estrogen Sauve et al. (2009)

PI3K Akt signaling Chemokine signaling Jin et al. (2015)

ECM receptor interaction PI3K Akt signaling Yu et al. (2015)

Cell adhesion molecule PI3K Akt signaling Ni et al. (2013)

Gap junction Wnt Yu et al. (2012)

Antigen processing and presentation Estrogen —

VEGF PI3K Akt signaling Geng et al. (2015)

‘—’ indicates instances where we identified no evidence of crosstalk.
aThe Cytosolic DNA sensing pathway is a branch of the NFjB pathway.
bThe Wnt signaling pathway includes a branch of the calcium signaling pathway.
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Section 2.2), we considered both the individual proteins as well

as the node containing both of them to be receptors in the

Hippo pathway. In our discussion below, we focus on the cross-

talk network in its entirety rather than on individual paths

within it.

The Hippo pathway is known to crosstalk with the TGF-b path-

way [see Varelas and Wrana (2012) for a review of Hippo

signaling]. Evidence in the literature indicates two distinct mechan-

isms of crosstalk: through activation and by inhibition. Our cross-

talk network captures both phenomena. The activating crosstalk

(yellow polygon in Fig. 5) occurs after TGFBR1/2 phosphorylates

SMAD4 and SMAD2/3. Subsequently, WWTR1/YAP1 (both mem-

bers solely of the Hippo pathway) binds to SMAD2/3 and SMAD4

to form a heteromeric complex (Mauviel et al., 2011). After

SMAD2/3/4 and WWTR1/YAP bind, the complex translocates to

the nucleus and causes the transcription of TGF-b target genes

(Varelas et al., 2010).

To cause inhibitory crosstalk, YAP forms a complex with

SMAD7 in the cytoplasm and represses TGFBR activity (Varelas

and Wrana, 2012). Our crosstalk network includes both the com-

plex formation between SMAD7 and YAP1 and the inhibition of

TGFBR1/2 by YAP1 and by SMAD7 (pink polygon in Fig. 5). This

negative crosstalk manifests under conditions of high cell density

even in the presence of TGF-b, the ligand for the TGF-b pathway

(Varelas and Wrana, 2012). High cell density activates the Hippo

pathway, causing the formation of the YAP1/SMAD7 complex and

subsequent inhibition of TGF-b receptors. This process decreases

the expression of TGF-b target genes.

3.7 Crosstalk from NFjB to neurotrophin pathway
Using the KEGG-family network, XTALK identified three pathway

pairs at a rank of 2 that were not in the gold-standard dataset

(Table 2). Our original query using only pathway names did not

provide conclusive evidence of crosstalk for any of these pairs.

However, when we modified the queries to include the names of

proteins involved in key interactions in XTALK’s crosstalk networks,

we succeeded in finding the appropriate publications. These results

point to the usefulness of crosstalk networks.

We focus our discussion on the crosstalk from the NFjB to the

Neurotrophin pathway. The NFjB signaling pathway is involved in

a diverse set of functions, especially those related to the innate and

adaptive immune response (Hayden and Ghosh, 2008). The

Neurotrophin signaling pathway regulates neural processes such as

neuronal survival, maintenance of axonal and dendritic networks

and synaptic plasticity (Longo and Massa, 2013). The NFjB path-

way contains three receptor families: Interleukin-1 receptors (IL1R),

tumor necrosis factor receptor (TNFR) and toll-like receptor (TLR).

The Neurotrophin pathway contains many TFs, including FOS,

JUN, ATF and NFjB. In addition to a direct activation edge from

TLR4 to NFKB1/RELA, the crosstalk network returned by XTALK

includes signaling paths that start at IL1R1 and TNFRSF11A

(RANK) (Fig. 6).

Table 4. Literature support for top-ranking pathway pairs in the NCI-PID test set

No. values of k Pathway A Pathway B Literature support

11 EphrinB EPHB pathway PDGFR beta signaling pathway Nakayama et al. (2013)

ALK1 pathway Regulation of Telomerase Li et al. (2006)

ATF 2 TF network IL23-mediated signaling events Piccaluga et al. (2014)

Signaling events mediated by PTP1B IL6-mediated signaling events Owen et al. (2015)

Nephrin Neph1 signaling in the kidney podocyte PDGFR beta signaling pathway —

Wnt signaling network Regulation of nuclear beta catenina Lien and Fuchs (2014)

Insulin Pathway PDGFR beta signaling pathway Giri et al. (2012)

Hepatocyte Growth Factor Receptorb PDGFR beta signaling pathway Kodama et al. (2000)

CXCR4-mediated signaling events Regulation of Telomerase Qu et al. (2008)

PDGFR alpha signaling pathway CXCR4-mediated signaling events Sciaccaluga et al. (2013)

Regulation of Telomerase CXCR4-mediated signaling events —

amb2 Integrin signaling PDGFR beta signaling pathway Bezuidenhout et al. (2009)

Plasma membrane estrogen receptor signaling PDGFR beta signaling pathway Finlay et al. (2004)

EphrinA EPHA pathway PDGFR beta signaling pathway Miao et al. (2001)

Signaling events regulated by Ret tyrosine kinase PDGFR beta signaling pathway —

IGF1 pathway PDGFR beta signaling pathway Ko et al. (1993)

IL5-mediated signaling events IL6-mediated signaling events Burnham et al. (2014)

ErbB4 signaling events IL6-mediated signaling events —

‘—’ indicates pairs where we identified no evidence of crosstalk.
aThe full name is ‘Regulation of nuclear beta catenin signaling and target gene transcription’.
bThe full name is ‘Signaling events mediated by Hepatocyte Growth Factor Receptor (c Met)’.

TGFBR1/2

YAP1
SMAD7

SMAD4SMAD2/3
SMAD3

WWTR1
YAP1

p

p

Fig. 5. Network computed by XTALK for crosstalk from the Hippo signaling

pathway (A) to the TGF-b signaling pathway (B). Blue: proteins/edges in path-

way A; purple: proteins/edges in pathway B; green: proteins/edges in both

pathways; gray: proteins in neither pathway; black: edges annotated to nei-

ther pathway; triangles: receptors; rectangles: TFs. Undirected edges repre-

sent group/complex interactions. Solid/dashed edges represent activating/

inhibitory interactions. The label ‘þp’ denotes phosphorylation interactions

discussed in the text. Please see the text for a discussion of the yellow and

pink polygons

248 A.N.Tegge et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/2/242/1743656 by guest on 22 D
ecem

ber 2025

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv549/-/DC1
(
S
)
Figure
Figure
N
two
,
c
),
u
,
Figure


We first discuss the signaling paths beginning at the TNF recep-

tor TNFRSF11A. The crosstalk network suggests that activated

TNFRSF11A binds with either TRAF2 or TRAF6. TRAF2 and

TRAF6 can themselves interact. TRAF6 activates MAPK8/9/10,

which then activates JUN/ATF2, JUN/FOS and several other TFs.

These heterodimers of the FOS and ATF family proteins with JUN

are commonly referred to in the literature as AP1 (van Dam and

Castellazzi, 2001). Lee et al. discovered a similar signaling path

that explained the role of TNFRSF11A (RANK) in the activation

of AP1 (Lee et al., 2000). They proposed a path that started

with TNFRSF11A, signaled through TRAF2 or TRAF6 until

MAPK8/9/10, which regulates AP1 activity. The authors noted that

the signaling from TRAF6 to MAPK8/9/10 was mediated through

ASK1, MEKK1, NIK and SEK1. Our crosstalk network contained

the core reactions involved in this signaling event. We did not re-

cover interactions involving ASK1, MEKK1, NIK or SEK1.

Next, we discuss the signaling reactions that begin at IL1R and

terminate at JUN/ATF2, JUN/FOS and other TFs. According to our

crosstalk network, IL1R activates TRAF6, which activates MAPK8/

9/10, thereby regulating AP1 activity. Many studies have suggested

that IL1 signaling activates AP1 (Li et al., 2001, 1999; O’Neill and

Greene, 1998). The response of AP1 after IL1 signaling is mediated

by TRAF6 (Li et al., 1999). To the best of our knowledge, these

interactions have not been documented in neural contexts.

4 Discussion

We have developed XTALK, a novel path-based approach to identify-

ing pathway crosstalk. XTALK identifies crosstalk by computing sev-

eral short paths along which an external signal can be transduced

from the receptors of one pathway to the TFs of the other. When

evaluated upon a literature-curated gold standard set of pathway

pairs, XTALK achieved an AUC of 65%, a value much higher than

node- and edge-based approaches (NIC and BPLN, respectively).

We observed a high variance in AUC from one pathway to another.

Focusing on the three pathways with the lowest AUCs, we succeeded

in finding support in the literature for 60% (9 out of 15) false-

positive pairs involving these pathways. Conversely, taking an ex-

perimentalist’s perspective, we focused on false positives among

highly ranked pairs and found support in the literature for 59% (7

out of 12) pairs. It is notable that search queries yielded the relevant

publications only when we augmented the pathway names with key

proteins that mediated the crosstalk. We learnt the identities of these

proteins only after examination of the crosstalk networks. These re-

sults underscore both the considerable difficulties and subtleties in

constructing a gold standard database of pathway crosstalk and the

value of XTALK in discovering crosstalk events.

In the second analysis, we evaluated crosstalk on two test sets of

pathway pairs, one from KEGG and the other from NCI-PID, that

we did not consider for inclusion in the gold standard. The literature

contained evidence for approximately 80% of pairs ranked highly

by XTALK for each dataset. These results suggest that an experimen-

talist interested in a poorly studied pathway or one that is not in our

gold standard may benefit from focusing experiments on the top-

ranked predictions made by XTALK. Moreover, crosstalk networks

can provide useful suggestions on the underlying mechanisms.

For the analysis of KEGG pathways, we used a signaling net-

work derived from all relations in the KEGG database. We analyzed

two versions of this signaling network: KEGG-family and KEGG-

protein. The value of k for each pathway in the KEGG-protein

was on average 14 times larger than that for the KEGG-family.

During the construction of the KEGG-protein network, we ex-

panded each interaction between two nodes in the KEGG-family

network into a complete bipartite graph between the member pro-

teins from each node in the KEGG-family (Supplementary Section

2). This transformation effectively increased the number of (short)

paths between two proteins in the KEGG-protein network when

compared with the corresponding families in the KEGG-family net-

work. Consequently, the crosstalk networks computed upon apply-

ing XTALK to KEGG-family were much smaller and easier to

interpret than for KEGG-protein.

Even more importantly, the paths in the KEGG-protein net-

work can be less informative. As we illustrated in Section 3.6, the

role of YAP (activating or inhibitory) differed based on the node in

the KEGG-family network to which it belonged. Elucidating these

context-dependent roles would not have been possible with the

KEGG-protein network, which would have collapsed both ver-

sions of YAP into a single node. Notwithstanding XTALK’s high pre-

cision on NCI-PID pathways, physical and regulatory interaction

networks can suffer from similar problems. For these reasons, we

encourage a move toward complex- or protein family level networks

such as KEGG-family, since (i) they represent the underlying biol-

ogy of signaling closely and (ii) the results with them are easier to in-

terpret. This recommendation is in line with recent trends to

explicitly represent protein families/complexes and reactions among

them in network models (Fukuda and Takagi, 2001; Hu et al.,

2007; Klamt et al., 2009; Ritz et al., 2014).

Finally, we acknowledge that identifying pathway crosstalk re-

mains a challenging problem. Although XTALK achieved higher AUC

than NIC and BPLN, XTALK’s performance may be further im-

proved. There may be several reasons for this performance: (i) while

creating the gold-standard dataset, we missed curating the correct

publications documenting crosstalk for some pairs of pathway due

to the inherent difficulty of phrasing the query correctly, as demon-

strated in Section 3.3; (ii) the crosstalk between two pathways has

not yet been discovered, e.g. a paper describing the crosstalk from

the Estrogen to the Hippo pathway was published a year after we

finished the gold-standard dataset (Zhou et al., 2015); (iii) the back-

ground signaling network may not contain the interactions respon-

sible for the crosstalk or (iv) as a community, we have an incomplete

understanding about different characteristics of crosstalk.

We are actively considering ways to address these challenges and

limitations. NLP-based methods can avoid the pitfalls of manual

curation, especially if we train them on the specific sentences docu-

menting crosstalk that we have included in our gold standard. We

are considering extensions of XTALK that explicitly take into account

the information on whether an interaction is activating or

p

IL1R1
TNFRSF11

TRAF6
TRAF2

MAPK8/9/10

JUN/FOS
JUN/ATF

p

Fig. 6. Crosstalk network constructed by XTALK from the NFjB Pathway (A) to

the Neurotrophin Pathway (B) using the KEGG-family network. See Figure 5

for details on node and edge colors and shapes. Supplementary Figure S6

displays the complete network
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inhibitory. It is also important to consider cell and tissue specificity.

XTALK and its future versions promise to serve as powerful analytic

methods to discover novel pairs of crosstalking pathways and the

underlying mechanisms.
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